Writing on the Facade of RWTH ICT Cubes: Cost Constrained Geometric Huffman Coding

Georg Böcherer, Fabian Altenbach, Martina Malsbender*, and Rudolf Mathar

Institute for Theoretical Information Technology
*kadawittfeldarchitektur

ISWCS 2011 Aachen

RWTH Information and Communication Technology Cubes

Slats

Slats keep building from heating up.

- 3 types of slats: left, right, and middle.
- height is 1.7 m
- widths $\boldsymbol{w}=(0.18 m, 0.18 m, 0.31 m)^{T}$.
- slats are placed each 0.625 m .

Design constraints

C1. For aesthetic reasons, the sequence of slats should appear random.
C2. To ensure enough cooling, around 33% of the facade area should be covered by the slats.
C3. Since shadow turns the rooms dark, the total shadowing should not exceed 33%.

Probabilistic Model

Random slat sequence:

- slats iid $\sim \mathbf{p}$.
- average width $\mathbf{w}^{T} \mathbf{p}$.

Some notation:

- $\mathbf{u}:=(1 / 3,1 / 3,1 / 3)^{T}$ denotes uniform distribution.
- Kullback-Leibler distance of two pmfs \mathbf{p}, \mathbf{q} is

$$
\mathbb{D}(\mathbf{p} \| \mathbf{q})=\sum_{i} p_{i} \log \frac{p_{i}}{q_{i}}
$$

Turn Design Constraints into Mathematical Problem

C1. For aesthetic reasons, the sequence of slats should appear random. minimize $\mathbb{p}(\mathbf{p} \| \mathbf{u})$
C2. To ensure enough cooling, around 33% of the facade area should be covered by the slats.
C3. Since shadow turns the rooms dark, the total shadowing should not exceed 33%. subject to $\mathbf{w}^{\top} \mathbf{p} \leq S=0.2063$
(Since $\mathbf{w}^{T} \mathbf{u}>S$, constraint C3. is active and constraint C2. can be dropped.)

- Solution is $\mathbf{p}^{*}=(0.3988,0.3988,0.2023)^{T}$
- Resulting shadowing is 33%.

Idea: Write a Text to the Facade

Map a text to the slats such that the resulting slat sequence fulfills the design constraints.

Approach: Source-Channel Separation

- Source encoder: map the text to a sequence of equiprobable bits [1].
- Channel encoder: map the binary sequence to a sequence of slats (this work).
[1] F. Altenbach, G. Böcherer, R. Mathar "Short Huffman Codes Producing 1s Half of the Time," to be presented at ICSPCS 2011, Honolulu.

Prefix-free matcher

Example

- Slats $\{\ell, r, m\}$, full prefix-free code $\{1,00,01\}$
- Prefix-free matcher:

$$
\begin{aligned}
1 & \mapsto \ell \\
01 & \mapsto r \\
00 & \mapsto m
\end{aligned}
$$

- Generated distribution d :

$$
d_{\ell}=2^{-1}, \quad d_{r}=2^{-2}, \quad d_{m}=2^{-2}
$$

Dyadic pmfs and Full Prefix-Free Codes

- d is a dyadic pmf if

$$
\begin{array}{r}
\sum_{i} d_{i}=1 \\
\text { for } i=1, \ldots, n: \exists \ell_{i} \in \mathbf{N}: d_{i}=2^{-\ell_{i}} .
\end{array}
$$

- A prefix-free code with codeword lengths ℓ is a full prefix-free code if

$$
\sum_{i} 2^{-\ell_{i}}=1
$$

- Every dyadic pmf can be generated by a full prefix-free code.
- Every full prefix-free code generates a dyadic pmf.

Optimization problem

$$
\begin{aligned}
\underset{\text { dyadic } \mathbf{d}}{\operatorname{minimize}} & \mathbb{D}(\mathbf{d} \| \mathbf{u}) \\
\text { subject to } & \mathbf{w}^{T} \mathbf{d} \leq S .
\end{aligned}
$$

Geometric Huffman coding

- Without the constraint, the problem is optimally solved by geometric Huffman coding (GHC) $[2,3]$.
- For a target pmf \mathbf{p} with $p_{1} \geq p_{2} \geq \cdots \geq p_{n}$, GHC recursively constructs a full prefix-free code with the updating rule

$$
p^{\prime}= \begin{cases}2 \sqrt{p_{n} p_{n-1}} & \text { if } p_{n-1}<4 p_{n} \\ p_{n-1} & \text { if } p_{n-1} \geq 4 p_{n}\end{cases}
$$

- The induced dyadic pmf minimizes $\mathbb{D}(\mathbf{d} \| \mathbf{p})$ over all dyadic pmfs d.
[2] G. Böcherer and R. Mathar, "Matching Dyadic Distributions to Channels," presented at DCC 2011, Snowbird.
[3] www.georg-boecherer.de/ghc

Cost Constrained Geometric Huffman coding (CCGHC)

- CCGHC adds a scaled version of the constraint to the objective function:

$$
\mathbb{D}(\mathbf{d} \| \mathbf{p})+\lambda \mathbf{w}^{T} \mathbf{p}=\mathbb{D}\left(\mathbf{d} \| \mathbf{p} \circ e^{-\lambda \mathbf{w}}\right) .
$$

The right-hand side is minimized by applying GHC to $\mathbf{p} \circ e^{-\lambda w}$.

- The best value of λ is found via bisection.

Asymptotic optimality

Proposition: Jointly generate k consecutive slats. Let $k \rightarrow \infty$.

- The per slat Kullback-Leibler distance converges to the optimal value $\mathbb{D}\left(\mathbf{p}^{*} \| \mathbf{u}\right)$.
- The per slat average width converges from below to the optimal value S.

Code found by CCGHC

Jointly generating $k=3$ slats turned out to be a good choice.

$0010: \ell \ell \ell$	$1101: \ell \ell$	$00000: \ell \ell m$
$1100: \ell r \ell$	$1111: \ell r r$	$00011: \ell r m$
$00010: \ell m \ell$	$01101: \ell m r$	$0000111: \ell m m$
$1110: r \ell \ell$	$1001: r \ell r$	$01100: r \ell m$
$1000: r r \ell$	$1011: r r r$	$01111: r r m$
$01110: r m \ell$	$01001: r m r$	$000010: r m m$
$01000: m \ell \ell$	$01011: m \ell r$	$001101: m \ell m$
$01010: m r \ell$	$1010: m r r$	$001100: m r m$
$001111: m m \ell$	$001110: m m r$	$0000110: m m m$

Numerical Results

Applying the code to the compressed text results in

$$
\begin{aligned}
\mathbf{p}_{\text {eff }} & =\frac{1}{4264}(\sharp\{\text { left }\}, \sharp\{\text { right }\}, \sharp\{\text { middle }\})^{T} \\
& =(0.3875,0.4089,0.2036)^{T} .
\end{aligned}
$$

The optimal pmf is $\mathbf{p}^{*}=(0.3988,0.3988,0.2023)^{T}$.

- The resulting shadowing is 33.03%.

A written facade

Discrete Memoryless Channel with Power Constraint

- \mathbf{p}^{*} capacity achieving pmf of a DMC with symbol powers w and power constraint E.
- The optimal prefix-free matcher is given by the solution of

$$
\begin{aligned}
\underset{\text { dyadic } \mathbf{d}}{\operatorname{minimize}} & \mathbb{D}\left(\mathbf{d} \| \mathbf{p}^{*}\right) \\
\text { subject to } & \mathbf{w}^{\top} \mathbf{d} \leq E .
\end{aligned}
$$

- CCGHC asymptotically solves this problem. This fixes the proof given in [4]. See [5] for details.
[4] G. Böcherer, F. Altenbach, R. Mathar "Capacity-achieving modulation for fixed constellations with average power constraint," presented at ICC 2011, Kyoto.
[5] G. Böcherer, "Capacity-achieving probabilistic shaping for noisy and noiseless channels," submitted as dissertation.

