

Writing on the Facade of RWTH ICT Cubes: Cost Constrained Geometric Huffman Coding

Georg Böcherer, Fabian Altenbach, Martina Malsbender*, and Rudolf Mathar

Institute for Theoretical Information Technology *kadawittfeldarchitektur

ISWCS 2011 Aachen

ULTRA HIGH-SPEED MOBILE INFORMATION AND COMMUNICATION

RWTH Information and Communication Technology Cubes

Slats

Slats keep building from heating up.

- ▶ 3 types of slats: left, right, and middle.
- height is 1.7m
- widths $\mathbf{w} = (0.18m, \ 0.18m, \ 0.31m)^T$.
- slats are placed each 0.625m.

Design constraints

- C1. For aesthetic reasons, the sequence of slats should appear random.
- C2. To ensure enough cooling, around 33% of the facade area should be covered by the slats.
- C3. Since shadow turns the rooms dark, the total shadowing should not exceed 33%.

Probabilistic Model

Random slat sequence:

- slats iid ~ p.
- ► average width **w**^T**p**.

Some notation:

- $\mathbf{u} := (1/3, 1/3, 1/3)^T$ denotes uniform distribution.
- ► Kullback-Leibler distance of two pmfs **p**, **q** is

$$\mathbb{D}(\mathbf{p}\|\mathbf{q}) = \sum_i p_i \log rac{p_i}{q_i}.$$

Turn Design Constraints into Mathematical Problem

- C1. For aesthetic reasons, the sequence of slats should appear random. minimize_p $\mathbb{D}(p||u)$
- C2. To ensure enough cooling, around 33% of the facade area should be covered by the slats.
- C3. Since shadow turns the rooms dark, the total shadowing should not exceed 33%. subject to $\mathbf{w}^T \mathbf{p} \le S = 0.2063$

(Since $\mathbf{w}^T \mathbf{u} > S$, constraint C3. is active and constraint C2. can be dropped.)

- Solution is $\mathbf{p}^* = (0.3988, 0.3988, 0.2023)^T$
- Resulting shadowing is 33%.

Idea: Write a Text to the Facade

Map a text to the slats such that the resulting slat sequence fulfills the design constraints.

Approach: Source-Channel Separation

- Source encoder: map the text to a sequence of equiprobable bits [1].
- Channel encoder: map the binary sequence to a sequence of slats (this work).

[1] F. Altenbach, G. Böcherer, R. Mathar "Short Huffman Codes Producing 1s Half of the Time," to be presented at ICSPCS 2011, Honolulu.

Prefix-free matcher Example

Slats $\{\ell, r, m\}$, full prefix-free code $\{1, 00, 01\}$

Prefix-free matcher:

$$1 \mapsto \ell$$
 $01 \mapsto r$
 $00 \mapsto m$

- Matching: $10001101 \cdots \rightarrow \ell mr\ell r \cdots$
- Generated distribution **d** :

$$d_{\ell} = 2^{-1}, \qquad d_r = 2^{-2}, \qquad d_m = 2^{-2}$$

Dyadic pmfs and Full Prefix-Free Codes

d is a dyadic pmf if

$$\sum_i d_i = 1$$
for $i=1,\ldots,n$: $\exists \ell_i \in \mathbf{N}: d_i = 2^{-\ell_i}.$

► A prefix-free code with codeword lengths *l* is a full prefix-free code if

$$\sum_{i} 2^{-\ell_i} = 1.$$

• Every dyadic pmf can be generated by a full prefix-free code.

• Every full prefix-free code generates a dyadic pmf.

Optimization problem

Geometric Huffman coding

- ▶ Without the constraint, the problem is optimally solved by geometric Huffman coding (GHC) [2,3].
- ► For a target pmf p with p₁ ≥ p₂ ≥ ··· ≥ p_n, GHC recursively constructs a full prefix-free code with the updating rule

$$p' = egin{cases} 2\sqrt{p_n p_{n-1}} & ext{if } p_{n-1} < 4p_n \ p_{n-1} & ext{if } p_{n-1} \ge 4p_n. \end{cases}$$

The induced dyadic pmf minimizes D(d||p) over all dyadic pmfs d.

[2] G. Böcherer and R. Mathar, "Matching Dyadic Distributions to Channels," presented at DCC 2011, Snowbird.

Cost Constrained Geometric Huffman coding (CCGHC)

 CCGHC adds a scaled version of the constraint to the objective function:

$$\mathbb{D}(\mathbf{d}\|\mathbf{p}) + \lambda \mathbf{w}^{\mathsf{T}} \mathbf{p} = \mathbb{D}(\mathbf{d}\|\mathbf{p} \circ e^{-\lambda \mathbf{w}}).$$

The right-hand side is minimized by applying GHC to $\mathbf{p} \circ e^{-\lambda \mathbf{w}}$.

• The best value of λ is found via bisection.

Asymptotic optimality

Proposition: Jointly generate k consecutive slats. Let $k \to \infty$.

- ► The per slat Kullback-Leibler distance converges to the optimal value D(p*||u).
- The per slat average width converges from below to the optimal value S.

Code found by ${\rm CCGHC}$

Jointly generating k = 3 slats turned out to be a good choice.

$0010:\ell\ell\ell$	1101 : <i>llr</i>	00000 : <i>llm</i>
$1100:\ell r\ell$	1111 : <i>ℓrr</i>	00011 : <i>lrm</i>
00010 : $\ell m \ell$	01101 : <i>ℓmr</i>	0000111 : <i>ℓmm</i>
1110 : <i>r</i> ℓℓ	1001 : <i>rℓr</i>	01100 : <i>rℓm</i>
1000 : <i>rrℓ</i>	1011 : rrr	01111 : rrm
01110 : $rm\ell$	01001 : <i>rmr</i>	000010 : <i>rmm</i>
01000 : $m\ell\ell$	01011 : <i>mℓr</i>	$001101: m\ell m$
01010 : $mr\ell$	1010 : mrr	001100 : <i>mrm</i>
001111 : <i>mm</i> ℓ	001110 : <i>mmr</i>	0000110 : <i>mmm</i>

Numerical Results

►

Applying the code to the compressed text results in

$$\begin{aligned} \mathbf{p}_{\text{eff}} &= \frac{1}{4264} (\sharp \{\textit{left}\}, \sharp \{\textit{right}\}, \sharp \{\textit{middle}\})^{\mathsf{T}} \\ &= (0.3875, \ 0.4089, \ 0.2036)^{\mathsf{T}}. \end{aligned}$$

The optimal pmf is $\mathbf{p}^* = (0.3988, \ 0.3988, \ 0.2023)^T$.

► The resulting shadowing is 33.03%.

A written facade

R

T

Discrete Memoryless Channel with Power Constraint

- **p*** capacity achieving pmf of a DMC with symbol powers **w** and power constraint *E*.
- The optimal prefix-free matcher is given by the solution of

$$\begin{array}{ll} \underset{d \neq \mathsf{d} \neq \mathsf{d} \in \mathsf{d}}{\min } & \mathbb{D}(\mathsf{d} \| \mathsf{p}^*) \\ \text{subject to} & \mathsf{w}^T \mathsf{d} \leq E. \end{array}$$

 CCGHC asymptotically solves this problem. This fixes the proof given in [4]. See [5] for details.

[4] G. Böcherer, F. Altenbach, R. Mathar "Capacity-achieving modulation for fixed constellations with average power constraint," presented at ICC 2011, Kyoto.

[5] G. Böcherer, "Capacity-achieving probabilistic shaping for noisy and noiseless channels," submitted as dissertation.

